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Extended law of corresponding states in short-range square wells:
A potential energy landscape study
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We study the statistical properties of the potential energy landscape of a system of particles interacting via

a very short-range square-well potential (of depth —u,) as a function of the range of attraction A to provide
thermodynamic insights of the Noro and Frenkel [M. G. Noro and D. Frenkel, J. Chem. Phys. 113, 2941
(2000)] scaling. We exactly evaluate the basin free energy and show that it can be separated into a vibrational
(A dependent) and a floppy (A independent) component. We also show that the partition function is a function
of AeP, explaining the equivalence of the thermodynamics for systems characterized by the same second

virial coefficient. An outcome of our approach is the possibility of counting the number of floppy modes (and

their entropy).
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Colloid and protein systems are often characterized by
interactions on a length scale significantly smaller than the
particle size. When the interaction range is less than 10% of
the repulsive diameter, both thermodynamic and dynamic
properties are drastically different from the standard liquid
behavior [1-5]. An important characteristic of short-range
spherical potentials V(r) is the independence of thermody-
namic properties by the specific V(r) shape. In particular, the
reduced second virial coefficient By=B,/BY =-2m[(1
—ePYO)2dr| BYS (where BYS is the hard-sphere B,) appears
to be a proper scaling variable that combines temperature T
and potential shape. Based on the analysis of several avail-
able theoretical and numerical data, Noro and Frenkel (NF)
[6] have proposed a generalized law of corresponding states
which states that all short-ranged spherically symmetric at-
tractive potentials are characterized by the same thermody-
namics properties if compared at the same reduced density
and B;. This universal behavior is captured by the extreme
limit of vanishing interaction range, i.e., by the celebrated
Baxter sticky sphere model [7], which, despite its known
pathologies [8,9], has been successfully used to interpret ex-
perimental results in colloidal and proteins systems. The
available accurate estimates of the critical point location and
two-phase coexistence of the Baxter model [10] are becom-
ing the reference for the thermodynamic behavior of all
short-range spherical potentials.

In this Rapid Communication we study the NF empirical
scaling [6] in the potential energy landscape (PEL) thermo-
dynamic framework, focusing on particles interacting via
square-well (SW) potential of different well-width A, to pro-
vide a deeper understanding of the generalized law of corre-
sponding states. We first show that for this model the NF law
holds in a large range of densities (not only close to the
liquid-gas critical point) and correctly reproduce the Baxter
behavior in the limit of vanishing A. Then we calculate, with
no approximations, the statistical properties of the PEL
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[11-13] and their dependence on the well width. This study
allows us to separate the basin free entropy in two compo-
nents, respectively, reflecting the exploration of the bond vol-
ume (A dependent) and the exploration of the available vol-
ume at fixed bond distance (A independent). This second
contribution is the only one existing in the Baxter model.

To generate equilibrated configurations, we perform
event-driven molecular dynamics (EDMD) simulations [14]
for the SW potential, defined by a potential well of depth
up=—1 and well width A. We investigate values of A/d rang-
ing from 107! to 1073, where d=1 is the hard-core particle
diameter, chosen as unity of length. Pairs of particles are
considered bonded when their relative distance is between d
and d+A. Density is expressed as packing fraction ¢
=m/6pd®, where p=N/L3, N being the number of particles
and L the simulation box size. According to the NF law, the
thermodynamic of the system is controlled by BZ and ¢, at
least in the proximity of the critical point. In the SW case,
B;—1~Ae"'T in the limit of short well width.

Figure 1 shows the potential energy per particle U/N [Fig.
1(a)] and the compressibility factor Z=PV/NkgT [Fig. 1(b)]
as a function of ¢ for several A values, at B;=—0.40. For
A <0.05, all curves collapse on the same curve confirming
the validity of NF scaling also outside the critical region.
Similar behavior is observed for other different B; values.
The value at which the scaling breaks, i.e., A~0.05, is in
close agreement with the value at which the Baxter solution
ceases to be a valid approximation for the SW model [15].
To confirm that the SW potential approaches the Baxter
model in the limit of vanishing A (and as a confirmation of
our ability to equilibrate configurations at small A values) we
compare in Fig. 1(c) the recently calculated radial distribu-
tion function g(r) of the Baxter model [10] with the g(r)
calculated for a SW system with A=10"* at B,=-0.92. The
agreement between the two results is perfect. The shoulders
and the ¢ functions indicating the presence of clusters with
well-defined structure [16] are reproduced both in their loca-
tion and their height.

The fact that for A <0.05 the state of the system is con-
trolled by the values of ¢ and of AeP*, suggests that—at
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FIG. 1. (Color online) Top: (a) Energy per particle vs ¢ for
various A at B;=—0.40. (b) Same as (a) for compressibility factor
Z=PV/NkgT. (c) Radial distribution function for ¢=0.164 and B,
=-0.92. The continuous line is from simulation of the Baxter model
[16], dots are for a SW with A=107*.

fixed ¢—the configurational part of the partition function Z
must be, in leading order, a function of AeP". Tn the PEL
formalism [11-13] the phase space is decomposed into ba-
sins of attractions of the local minima of the PEL—the so-
called inherent structures (IS)—and the partition function is
written as a sum over all landscape basins, each of them
weighted by the local minimum Boltzmann factor and by the
basin free energy. In the SW case, we associate an IS to a
specific bonding pattern [17] (thus, the IS energy is ex-
pressed by the total number of bonds N;) and the basin free
energy to the logarithmic of the (multidimensional) volume
Q) which can be explored in configuration space without
breaking or reforming bonds. In this respect, the conceptual
operation of thinking Z as a sum over all possible PEL ba-
sins is equivalent to expressing Z as a sum over all possible
bonding pattern [18]. Since the Boltzmann factor weighting
the probability of each configuration is e#“0Vb, scaling in the
variable AeP“0 implies that the number of states () sampled
by each fixed bonding pattern must scale with A as AM, i.e.,
each bond is independent and contributes a quantity of order
A to Q. This is the hypothesis that we test next.

To precisely estimate () we implement a generalization of
the thermodynamic integration technique first used by Fren-
kel and Ladd to evaluate the free energy of the hard sphere
crystals [19]. In this technique, the system Hamiltonian H, is
complemented by an harmonic term A\Z,(r;-T,;)> centered
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around a reference configuration (T, ...,Ty) of strength A
acting on each particle. The essence of this method lies in the
possibility of performing a thermodynamic integration over
A\ from a state of known free energy to the state of interest
(A=0). When \ is very large, particles harmonically oscillate
around the reference state and the system behaves like a
collection of 3N harmonic oscillators, i.e., an Einstein solid.
If the unperturbed system is identified with a specific bond-
ing pattern and H, is defined as zero if the configuration has
the correct bonding pattern and infinity if the bonding pattern
has changed (i.e., if a bond is broken or a new bond is
formed), then the result of the thermodynamic integration
provides an exact measure of the basin free energy. Since the
exploration of space within the fixed bond-pattern basin
takes place on a flat energy surface the only contribution to
the basin free energy is entropic. The basin entropy per par-
ticle in units of kg, 0,y can be formally written as [18]

Ao

O'basin:_:BfE(T,)\go)'l'f )\<E (r,—?i)2> dln\, (1)
0 i N

where fg(T,\) is the free energy of 3N harmonic oscillators
coupled by an elastic constant A, (-), an ensemble average at
a fixed value of N\, and A, is any value of A\ such that the
harmonic contribution is dominant as compared to H, and
thus (AZ,(r;=T,)*),~ 3/2Nk,zT. From a technical point of
view we evaluate (AZ,(r;=T,;)%), for 30 or more \ values
between \,, and 0 via Monte Carlo (MC) simulations reject-
ing all moves that modify the bond pattern.

To guide the interpretation of the numerical results it is
helpful to examine the behavior of two particles bonded by a
square well in three dimensions. Fixing particle 1 at the ori-
gin (to neglect the trivial center of mass degrees of freedom)
and selecting an Einstein reference site acting on particle 2 in
an arbitrary position T, = (x,0,0) (with d<x<d+A), the re-
sulting {(r,—T,)%), is

_ Jd
M(ry =), =- IB In 2,(B), ()
where the generating (or partition) function Z,(8) is
d+A  —BN(r + x)2( —4BNrx -1
Z\(B)=2m f 2 (e )rdr. (3)
d 2\

The resulting \ dependence of 28\{(r,—T,)?), is shown in
Fig. 2(a) for three different values of A. At large N\ (the
harmonic limit), the quantity 28\ {(r,~T,)?), goes to three,
the total number of degrees of freedom. On decreasing A, the
function shows a two-step decay to zero with an intermediate
plateau at the value two. The two crossovers (from 3 —2 and
from 2—0) are taking place at values of \;~(2/A)? and
N\, =~ (2/d)?. To interpret this behavior we recall that for very
large N (A>\;), confinement is provided by the harmonic
potential. For N, <A <Ay, confinement of the harmonic po-
tential has become larger than A and the bond distance be-
comes the relevant quantity controlling the mean square dis-
placement. For even smaller N (A<<\,), confinement is
provided by the finite bond volume (a corona of width A and
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FIG. 2. (Color online) Top: Mean square displacement of a par-
ticle harmonically bounded to a reference point and interacting via
a SW with a particle located in the origin for different N values. The
probability distribution of the particle is schematically shown above
the plot for three representative values of A\: particle completely
delocalized (left), particle localized by the bond (center), and par-
ticle localized by the harmonic force (right). \; and A, are discussed
in the text. Bottom: Mean square displacement 2BN(Z(r;
—-T)%\/N (labeled 28\(+?) for simplicity in the figure) for a SW
system with ¢=0.30 and B:=—0.69 vs N\, for different A values.
The Einstein limit is shown as a dashed line.

inner surface 47d®). The two-step crossover makes it pos-
sible to count the number of modes that are related to explo-
ration of the bond width and the number of modes that are
related to exploration of space at fixed interparticle distance.
Indeed, the first crossover is A dependent while the second
one is A independent. Hence, the Ladd and Frenkel method
allows one not only to evaluate the total change in entropy
but also to count (and separate) the number of modes that are
related to the exploration of the bond distance (vibrational
modes) from the modes that are related to the exploration of
the volume with rigid bonds (floppy modes). The behavior of
2BN\(Z,(r;=T;)*),/N for a bond configuration of 200 particles
(a typical equilibrium configuration produced by MD simu-
lation) for different values of A is shown in Fig. 2(b). The
bonding network is identical for all A values. As in the two-
particles example, the shape of the curve shows two parts,
one A independent and one A dependent. As from Eq. (1),
the area under the A\(2,(r;=T;)?),/N vs In \ curve is a mea-
sure of o0y,n, the entropy associated to the exploration of
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FIG. 3. (Color online) Top: Number of state sampled QN
=exp(Tpyin) VS A for different state points. The straight lines are the
single parameter fit of the form AA"» where n;, is the number of
bonds per particle, i.e., n,=N,/N. The inset shows the location of
the corresponding state points in the B;—d) phase diagram. It also
show the percolation line (dashed line) and the liquid-gas coexist-
ence from Ref. [10]. Bottom: Symbols are 28\ (Z,(r;=T;)*),/N (la-
beled 28\ {r?) for simplicity in the figure) vs N for A=1073; the
dashed horizontal line is 3 —n,,. Note that the intermediate N\ plateau
is well reproduced by the fraction of floppy modes f;=3-n,,.

space at fixed bonding pattern. The A independent and the A
dependent parts of N(Z,(r;—T,)?), give rise to two different
contributions to oy, Which we can identify as the floppy
[20] A independent—the dark shaded region in the cartoon in
Fig. 2(a)—(Nopoppy=1n Q) and the vibrational A depen-
dent part—the light colored region—(No;,=1In Q).
According to the PEL picture of the NF law, Qgﬁgn
=¢“asin must be proportional to A"», where n,=N,/N is the
number of bonds per particle. This prediction can be put
under a severe test, since both A and n, are a priori known,
by comparing the calculated values for e%basin with A”. This
comparison is reported in Fig. 3(a) for several typical bond-
ing configurations with different bonding patterns, extracted
from equilibrium simulations at different ¢ and 7, encom-
passing the range 1.03<<n,<<2.61. In all the studied cases,
Qpasin ~ A" with extreme accuracy. The validity of such a
relationship suggests that for short-range SW, each bond acts
as an independent unit (so that the vibrational entropy of the
bonding pattern coincides with the sum of all the bond en-
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tropies). In the PEL language, the NF scaling is an expres-
sion of the independence of the bonds. In this respect, proper
scaling between different potential shapes is predicted when
the vibrational free energy of a bonded pair is chosen as a
proper scaling variable. The possibility of separating in a
precise way .y, and Q.. [see the cartoon in Fig. 2(a)],
allows us to evaluate also the (A independent) volume in
configuration space sampled by the a specific bonding pat-
tern when all bond distances are fixed. This volume corre-
sponds to the free rolling motions of the particles with no
bond breaking or forming, and it is essentially the basin vol-
ume accessible to the Baxter model. It is interesting to inves-
tigate the dependence of this quantity on the number of
bonds, since one expect that on increasing the connectivity,
the entropy of the floppy modes should decrease. For the
short-range SW under consideration the fraction of floppy
modes (the height of the plateau in 28\(Z,(r;—T;)*)\/N) is
found to be f;=3-n, [see Fig. 3(b)], a value consistent with
the existence of N, independent vibrational degrees of free-
dom. Hence, the total floppy entropy [the area under the
curve—see Eq. (1)] should vanish close to the point when
n,=3 (i.e., each particle is involved in average in six bonds).
This expectation is indeed borne out in the calculated f, de-
pendence of o,y shown in Fig. 4. Unexpectedly, the floppy
entropy goes to zero as a power law ooy, f‘;’ The value of
the exponent suggests that not only the number of modes but
also the floppy entropy per mode vanishes with a power law
close to fy=0. It is interesting to observe that at the state
point where N, = 3N, the full entropy of the system would be
given only by the logarithm of the number of topologically
different bonding patterns.

In conclusion, we have shown that the empirical NF law
of corresponding states can be explained in the rigorous PEL
thermodynamic formalism as arising from the additive con-
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FIG. 4. (Color online) Entropy of the floppy modes (oyoppy) Vs
fraction of floppy modes (f;=3-N,/N). The straight line is a power
law with exponent 3, i.e., Ofoppy /-

tribution of the bonds to the basin entropy. An unexpected
outcome of this study is a methodology to separately evalu-
ate the fraction of floppy modes and their entropy for any
specific bonded configuration, a method which can be used
in studies of the rigidity of hard particle systems [21].
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